Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 216(Pt 1): 114421, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36162464

RESUMO

Quinolinic acid (QA) is an essential nitrogen-containing aromatic heterocyclic compounds in organisms and it also acts as an important intermediate in chemical industry, which has strong neurotoxicity and cytotoxicity. The wide range of sources and applications caused the release and accumulation of QA in the environment which might poses a hazard to ecosystems and human health. However, few research on the degradation of QA by microorganisms and toxicity of QA and its metabolites were reported. Alcaligenes faecalis JQ191 could degrade QA but the genetic foundation of QA degradation has not been studied. In this study, the gene cluster quiA1A2A3A4 was identified from A. faecalis JQ191, which was responsible for the initial catabolism step of QA. The quiA1A2A3A4 gene cluster encodes a novel cytoplasmic four-component hydroxylase QuiA. The 1H nuclear magnetic resonance indicated that QuiA catalyzed QA to 6-hydroxyquinolinic acid (6HQA) and the H218O-labeling analysis confirmed that the hydroxyl group incorporating into 6HQA was derived from water. Toxicity tests showed that the QA could approximately inhibit 20%-80% growth of Chlorella ellipsoidea, and 6HQA could relieve at least 50% QA growth inhibition of Chlorella ellipsoidea, indicating that the 6-hydroxylation of QA by QuiA is a detoxification process. This research provides new insights into the metabolism of QA by microorganism and potential application in the bioremediation of toxic pyridine derivatives-contaminated environments.


Assuntos
Alcaligenes faecalis , Chlorella , Ácido Quinolínico , Alcaligenes faecalis/enzimologia , Alcaligenes faecalis/genética , Chlorella/metabolismo , Ecossistema , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Ácido Quinolínico/metabolismo
2.
Sci Rep ; 11(1): 6606, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758248

RESUMO

High lead (Pb) concentration in soils is becoming a severe threat to human health. It also deteriorates plants, growth, yield and quality of food. Although the use of plant growth-promoting rhizobacteria (PGPR), biochar and compost can be effective environment-friendly amendments for decreasing Pb stress in crop plants, the impacts of their simultaneous co-application has not been well documented. Thus current study was carried, was conducted to investigate the role of rhizobacteria and compost mixed biochar (CB) under Pb stress on selected soil properties and agronomic parameters in mint (Mentha piperita L.) plants. To this end, six treatments were studied: Alcaligenes faecalis, Bacillus amyloliquefaciens, CB, PGPR1 + CB, PGPR2 + CB and control. Results showed that the application A. faecalis + CB significantly decreased soil pH and EC over control. However, OM, nitrogen, phosphorus and potassium concentration were significantly improved in the soil where A. faecalis + CB was applied over control. The A. faecalis + CB treatment significantly improved mint plant root dry weight (58%), leaves dry weight (32%), chlorophyll (37%), and N (46%), P (39%) and K (63%) leave concentration, while also decreasing the leaves Pb uptake by 13.5% when compared to the unamended control. In conclusion, A. faecalis + CB has a greater potential to improve overall soil quality, fertility and mint plant productivity under high Pb soil concentration compared to the sole application of CB and A. faecalis.


Assuntos
Carvão Vegetal/metabolismo , Compostagem/métodos , Chumbo/toxicidade , Mentha/efeitos dos fármacos , Rizosfera , Poluentes do Solo/toxicidade , Alcaligenes faecalis/enzimologia , Alcaligenes faecalis/metabolismo , Aminoidrolases/metabolismo , Bacillus amyloliquefaciens/enzimologia , Bacillus amyloliquefaciens/metabolismo , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Frutas/química , Chumbo/metabolismo , Mentha/microbiologia , Poluentes do Solo/metabolismo , Estresse Fisiológico , Verduras/química
3.
Microb Cell Fact ; 19(1): 194, 2020 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-33069232

RESUMO

BACKGROUND: Enzymatic quantification of creatinine has become an essential method for clinical evaluation of renal function. Although creatinase (CR) is frequently used for this purpose, its poor thermostability severely limits industrial applications. Herein, we report a novel creatinase from Alcaligenes faecalis (afCR) with higher catalytic activity and lower KM value, than currently used creatinases. Furthermore, we developed a non-biased phylogenetic consensus method to improve the thermostability of afCR. RESULTS: We applied a non-biased phylogenetic consensus method to identify 59 candidate consensus residues from 24 creatinase family homologs for screening afCR mutants with improved thermostability. Twenty-one amino acids of afCR were selected to mutagenesis and 11 of them exhibited improved thermostability compared to the parent enzyme (afCR-M0). Combination of single-site mutations in sequential screens resulted in a quadruple mutant D17V/T199S/L6P/T251C (M4-2) which showed ~ 1700-fold enhanced half-life at 57 °C and a 4.2 °C higher T5015 than that of afCR-M0. The mutant retained catalytic activity equivalent to afCR-M0, and thus showed strong promise for application in creatinine detection. Structural homology modeling revealed a wide range of potential molecular interactions associated with individual mutations that contributed to improving afCR thermostability. CONCLUSIONS: Results of this study clearly demonstrated that the non-biased-phylogenetic consensus design for improvement of thermostability in afCR is effective and promising in improving the thermostability of more enzymes.


Assuntos
Alcaligenes faecalis/enzimologia , Mutagênese Sítio-Dirigida/métodos , Temperatura , Ureo-Hidrolases/metabolismo , Substituição de Aminoácidos , Estabilidade Enzimática , Cinética , Simulação de Dinâmica Molecular , Filogenia , Engenharia de Proteínas , Ureo-Hidrolases/genética
4.
Int J Mol Sci ; 21(21)2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33113984

RESUMO

Arylacetonitrilase from Alcaligenes faecalis ATCC8750 (NitAF) hydrolyzes various arylacetonitriles to the corresponding carboxylic acids. A systematic strategy of amino acid residue screening through sequence alignment, followed by homology modeling and biochemical confirmation was employed to elucidate the determinant of NitAF catalytic efficiency. Substituting Phe-140 in NitAF (wild-type) to Trp did not change the catalytic efficiency toward phenylacetonitrile, an arylacetonitrile. The mutants with nonpolar aliphatic amino acids (Ala, Gly, Leu, or Val) at location 140 had lower activity, and those with charged amino acids (Asp, Glu, or Arg) exhibited nearly no activity for phenylacetonitrile. Molecular modeling showed that the hydrophobic benzene ring at position 140 supports a mechanism in which the thiol group of Cys-163 carries out a nucleophilic attack on a cyanocarbon of the substrate. Characterization of the role of the Phe-140 residue demonstrated the molecular determinant for the efficient formation of arylcarboxylic acids.


Assuntos
Alcaligenes faecalis/enzimologia , Aminoidrolases/química , Aminoidrolases/metabolismo , Fenilalanina/metabolismo , Acetonitrilas/metabolismo , Alcaligenes faecalis/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Aminoidrolases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Mutação , Conformação Proteica
5.
Phys Chem Chem Phys ; 22(36): 20922-20928, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32924054

RESUMO

Nitrite reductases are enzymes that aid in the denitrification process by catalyzing the reduction of nitrite to nitric oxide gas. Since this reaction is the first committed step that involves gas formation, it is regarded to be a vital step for denitrification. However, the mechanism of copper-containing nitrite reductase is still under debate due to the discrepancy between the theoretical and experimental data, especially in terms of the roles of secondary shell residues Asp98 and His255 and the electron transfer mechanism between the two copper sites. Herein, we revisited the nitrite reduction mechanism of A. faecalis copper nitrite reductase using QM(B3LYP)/MM-based metadynamics. It is found that the intramolecular electron transfer from T1-Cu to T2-Cu occurs via an asynchronous proton-coupled electron transfer (PCET) mechanism, with electron transfer (ET) preceding proton transfer (PT). In particular, we found that the ET process is driven by the conformation conversion of Asp98 from the gatekeeper to the proximal one, which is much more energy-demanding than the PCET itself. These results highlight that the inclusion of an electron donor is vital to investigate electron-transfer related processes such as PCET.


Assuntos
Nitrito Redutases/química , Nitritos/química , Alcaligenes faecalis/enzimologia , Proteínas de Bactérias/química , Catálise , Cobre/química , Teoria da Densidade Funcional , Elétrons , Modelos Químicos , Oxirredução , Prótons
6.
Sci Rep ; 10(1): 12159, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699323

RESUMO

Consumption of heavy metals, especially lead (Pb) contaminated food is a serious threat to human health. Higher Pb uptake by the plant affects the quality, growth and yield of crops. However, inoculation of plant growth-promoting rhizobacteria (PGPR) along with a mixture of organic amendments and biochar could be an effective way to overcome the problem of Pb toxicity. That's why current pot experiment was conducted to investigate the effect of compost mixed biochar (CB) and ACC deaminase producing PGPR on growth and yield of spinach plants under artificially induced Pb toxicity. Six different treatments i.e., control, Alcaligenes faecalis (PGPR1), Bacillus amyloliquefaciens (PGPR2), compost + biochar (CB), PGPR1 + CB and PGPR2 + CB were applied under 250 mg Pb kg-1 soil. Results showed that inoculation of PGPRs (Alcaligenes faecalis and Bacillus amyloliquefaciens) alone and along with CB significantly enhanced root fresh (47%) and dry weight (31%), potassium concentration (11%) in the spinach plant. Whereas, CB + Bacillus amyloliquefaciens significantly decreased (43%) the concentration of Pb in the spinach root over control. In conclusion, CB + Bacillus amyloliquefaciens has the potential to mitigate the Pb induced toxicity in the spinach. The obtained result can be further used in the planning and execution of rhizobacteria and compost mixed biochar-based soil amendment.


Assuntos
Carvão Vegetal/química , Chumbo/toxicidade , Poluentes do Solo/toxicidade , Spinacia oleracea/efeitos dos fármacos , Alcaligenes faecalis/enzimologia , Alcaligenes faecalis/isolamento & purificação , Alcaligenes faecalis/metabolismo , Bacillus amyloliquefaciens/enzimologia , Bacillus amyloliquefaciens/isolamento & purificação , Bacillus amyloliquefaciens/metabolismo , Proteínas de Bactérias/metabolismo , Carbono-Carbono Liases/metabolismo , Clorofila/metabolismo , Concentração de Íons de Hidrogênio , Chumbo/química , Chumbo/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Potássio/análise , Solo/química , Microbiologia do Solo , Poluentes do Solo/química , Poluentes do Solo/metabolismo , Spinacia oleracea/química , Spinacia oleracea/microbiologia , Simbiose
7.
Toxins (Basel) ; 11(9)2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31489931

RESUMO

Ochratoxin A (OTA) is a well-known, natural contaminant in foods and feeds because of its toxic effects, such as nephrotoxicity in various animals. Recent studies have revealed that Alcaligenes faecalis could generate enzymes to efficiently degrade OTA to ochratoxin α (OTα) in vitro. In an effort to obtain the OTA degrading mechanism, we purified and identified a novel degrading enzyme, N-acyl-L-amino acid amidohydrolase (AfOTase), from A. faecalis DSM 16503 via mass spectrometry. The same gene of the enzyme was also encountered in other A. faecalis strains. AfOTase belongs to peptidase family M20 and contains metal ions at the active site. In this study, recombination AfOTase was expressed and characterized in Escherichia coli. The molecular mass of recombinant rAfOTase was approximately 47.0 kDa, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme exhibited a wide temperature range (30-70 °C) and pH adaptation (4.5-9.0) and the optimal temperature and pH were 50 °C and 6.5, respectively.


Assuntos
Alcaligenes faecalis/enzimologia , Amidoidrolases/metabolismo , Ocratoxinas/metabolismo , Amidoidrolases/genética , Sequência de Aminoácidos , Catálise , Clonagem Molecular , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Hidrólise , Ocratoxinas/química , Filogenia , Temperatura
8.
Bioprocess Biosyst Eng ; 42(12): 1983-1992, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31420725

RESUMO

N2O production from NH2OH oxidation involved in a heterotrophic nitrifier Alcaligenes faecalis strain NR was studied. 15N-labeling experiments showed that biological NH2OH consumption by strain NR played a dominant role in N2O production, although chemical reaction between NH2OH and O2 indeed existed. Hydroxylamine oxidoreductase (HAO) from strain NR was partially purified by (NH4)2SO4 fractionation and DEAE Cartridge chromatography. The maximum activity of HAO was 9.60 mU with a specific activity of 92.04 mU/(mg protein) when K3Fe(CN)6 was used as an electron acceptor. The addition of Ca2+ promoted the HAO activity, while the presence of Mn2+ inhibited the enzyme activity. The optimal temperature and pH for HAO activity were 30 °C and 8. Analysis of enzyme-catalyzed products demonstrated that NH2OH oxidation catalyzed by HAO from strain NR played significant role in the production of N2O.


Assuntos
Alcaligenes faecalis/enzimologia , Microbiologia Industrial , Óxido Nitroso/metabolismo , Oxirredutases/biossíntese , Aerobiose , Cálcio/química , Catálise , Cromatografia , Meios de Cultura , Elétrons , Concentração de Íons de Hidrogênio , Hidroxilaminas , Íons , Manganês/química , Espectrometria de Massas , Isótopos de Nitrogênio , Oxirredução , Temperatura
9.
J Agric Food Chem ; 67(36): 10032-10041, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31419121

RESUMO

Flonicamid (N-cyanomethyl-4-trifluoromethylnicotinamide, FLO), a novel selective systemic pyridinecarboxamide insecticide, effectively controls hemipterous pests. However, microbial degradation of flonicamid, along with the enzymatic mechanism, has not been studied. Here, bacterial isolate PG13, which converts flonicamid into 4-(trifluoromethyl)nicotinol glycine (TFNG) and N-(4-trifluoromethylnicotinoyl)glycinamide (TFNG-AM), was isolated and identified as Alcaligenes faecalis CGMCC 17553. The genome of CGMCC 17553 contained five nitrilases but no nitrile hydratase, and recombinant Escherichia coli strains harboring CGMCC 17553 nitrilase gene nitA or nitD acquired the ability to degrade flonicamid. Purified NitA catalyzed flonicamid into both TFNG and TFNG-AM, indicating dual functionality, while NitD could only produce TFNG-AM. Three-dimensional homology modeling revealed that aromatic amino acid residues in the catalytic pocket affected nitrilase activity. These findings further our understanding of the enzymatic mechanism of flonicamid metabolism in the environment and may help develop a potential bioremediation agent for the elimination of flonicamid contamination.


Assuntos
Alcaligenes faecalis/metabolismo , Aminoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Inseticidas/metabolismo , Niacinamida/análogos & derivados , Alcaligenes faecalis/enzimologia , Alcaligenes faecalis/genética , Aminoidrolases/genética , Proteínas de Bactérias/genética , Biocatálise , Biodegradação Ambiental , Hidrólise , Inseticidas/química , Niacinamida/química , Niacinamida/metabolismo
10.
J Bacteriol ; 201(16)2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31160400

RESUMO

Picolinic acid (PA) is a natural toxic pyridine derivative. Microorganisms can degrade and utilize PA for growth. However, the full catabolic pathway of PA and its physiological and genetic foundation remain unknown. In this study, we identified a gene cluster, designated picRCEDFB4B3B2B1A1A2A3, responsible for the degradation of PA from Alcaligenes faecalis JQ135. Our results suggest that PA degradation pathway occurs as follows: PA was initially 6-hydroxylated to 6-hydroxypicolinic acid (6HPA) by PicA (a PA dehydrogenase). 6HPA was then 3-hydroxylated by PicB, a four-component 6HPA monooxygenase, to form 3,6-dihydroxypicolinic acid (3,6DHPA), which was then converted into 2,5-dihydroxypyridine (2,5DHP) by the decarboxylase PicC. 2,5DHP was further degraded to fumaric acid through PicD (2,5DHP 5,6-dioxygenase), PicE (N-formylmaleamic acid deformylase), PicF (maleamic acid amidohydrolase), and PicG (maleic acid isomerase). Homologous pic gene clusters with diverse organizations were found to be widely distributed in Alpha-, Beta-, and Gammaproteobacteria Our findings provide new insights into the microbial catabolism of environmental toxic pyridine derivatives.IMPORTANCE Picolinic acid is a common metabolite of l-tryptophan and some aromatic compounds and is an important intermediate in organic chemical synthesis. Although the microbial degradation/detoxification of picolinic acid has been studied for over 50 years, the underlying molecular mechanisms are still unknown. Here, we show that the pic gene cluster is responsible for the complete degradation of picolinic acid. The pic gene cluster was found to be widespread in other Alpha-, Beta-, and Gammaproteobacteria These findings provide a new perspective for understanding the catabolic mechanisms of picolinic acid in bacteria.


Assuntos
Alcaligenes faecalis/genética , Alcaligenes faecalis/metabolismo , Proteínas de Bactérias/metabolismo , Família Multigênica , Ácidos Picolínicos/metabolismo , Alcaligenes faecalis/química , Alcaligenes faecalis/enzimologia , Proteínas de Bactérias/genética , Biodegradação Ambiental , Redes e Vias Metabólicas , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Ácidos Picolínicos/química
11.
J Bacteriol ; 201(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30692170

RESUMO

Picolinic acid (PA), a typical C-2-carboxylated pyridine derivative, is a metabolite of l-tryptophan and many other aromatic compounds in mammalian and microbial cells. Microorganisms can degrade and utilize PA for growth. However, the precise mechanism of PA metabolism remains unknown. Alcaligenes faecalis strain JQ135 utilizes PA as its carbon and nitrogen source for growth. In this study, we screened a 6-hydroxypicolinic acid (6HPA) degradation-deficient mutant through random transposon mutagenesis. The mutant hydroxylated 6HPA into an intermediate, identified as 3,6-dihydroxypicolinic acid (3,6DHPA), with no further degradation. A novel decarboxylase, PicC, was identified to be responsible for the decarboxylation of 3,6DHPA to 2,5-dihydroxypyridine. Although, PicC belonged to the amidohydrolase 2 family, it shows low similarity (<45%) compared to other reported amidohydrolase 2 family decarboxylases. Moreover, PicC was found to form a monophyletic group in the phylogenetic tree constructed using PicC and related proteins. Further, the genetic deletion and complementation results demonstrated that picC was essential for PA degradation. The PicC was Zn2+-dependent nonoxidative decarboxylase that can specifically catalyze the irreversible decarboxylation of 3,6DHPA to 2,5-dihydroxypyridine. The Km and kcat toward 3,6DHPA were observed to be 13.44 µM and 4.77 s-1, respectively. Site-directed mutagenesis showed that His163 and His216 were essential for PicC activity. This study provides new insights into the microbial metabolism of PA at molecular level.IMPORTANCE Picolinic acid is a natural toxic pyridine derived from l-tryptophan metabolism and other aromatic compounds in mammalian and microbial cells. Microorganisms can degrade and utilize picolinic acid for their growth, and thus a microbial degradation pathway of picolinic acid has been proposed. Picolinic acid is converted into 6-hydroxypicolinic acid, 3,6-dihydroxypicolinic acid, and 2,5-dihydroxypyridine in turn. However, there was no physiological and genetic validation for this pathway. This study demonstrated that 3,6-dihydroxypicolinic acid was an intermediate in picolinic acid catabolism and further identified and characterized a novel amidohydrolase 2 family decarboxylase PicC. PicC was also shown to catalyze the decarboxylation of 3,6-dihydroxypicolinic acid into 2,5-dihydroxypyridine. This study provides a basis for understanding picolinic acid degradation and its underlying molecular mechanism.


Assuntos
Alcaligenes faecalis/enzimologia , Carboxiliases/isolamento & purificação , Carboxiliases/metabolismo , Ácidos Picolínicos/metabolismo , Alcaligenes faecalis/genética , Carboxiliases/genética , Coenzimas/metabolismo , Elementos de DNA Transponíveis , Testes Genéticos , Cinética , Mutagênese Insercional , Mutagênese Sítio-Dirigida , Filogenia , Homologia de Sequência de Aminoácidos , Zinco/metabolismo
12.
Appl Microbiol Biotechnol ; 102(17): 7455-7464, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29968036

RESUMO

High level expression of penicillin G acylase (PGA) in Escherichia coli is generally constricted by a complex maturation process and multiple limiting steps. In this study, three PGAs isolated from Providencia rettgeri (PrPGA), Alcaligenes faecalis (AfPGA), and Achromobacter xylosoxidans (AxPGA) were efficiently expressed in E. coli by replacing with applicable signal peptide. Different bottlenecks of the expression process were analyzed for PrPGA, AfPGA, and AxPGA. Subsequently, five efficient signal peptides, including OmpA, pelB, Lpp, PhoA, and MalE, were used to replace the original signal peptides of the PGAs. With respect to AfPGA and AxPGA, translocation was the primary limitation, and the use of pelB signal peptide effectively overcame this barrier. For PrPGA, which was almost not expressed in wild type, the translation initiation efficiency was optimized by replacing with MalE signal peptide. In addition, low temperature (20 °C) slowed down the transcription and translation, thereby facilitating the posttranslational process and preventing the formation of inclusion bodies. Furthermore, combined induction with IPTG and arabinose not only enhanced the cell density but also remarkably improved the expression of PGAs. Final specific activities of the three PGAs reached 2100 (PrPGA), 9200 (AfPGA), and 1400 (AxPGA) U/L/OD600, respectively. This simple and robust strategy by fitting replacement of signal peptide might dramatically improve the expression of PGAs from various bacteria, which was significant in the production of many valuable ß-lactam antibiotics.


Assuntos
Regulação Enzimológica da Expressão Gênica , Microbiologia Industrial/métodos , Penicilina Amidase/genética , Sinais Direcionadores de Proteínas/genética , Achromobacter denitrificans/enzimologia , Achromobacter denitrificans/genética , Alcaligenes faecalis/enzimologia , Alcaligenes faecalis/genética , Escherichia coli/genética , Providencia/enzimologia , Providencia/genética
13.
Appl Environ Microbiol ; 84(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29802182

RESUMO

5-Hydroxypicolinic acid (5HPA), a natural pyridine derivative, is microbially degraded in the environment. However, the physiological, biochemical, and genetic foundations of 5HPA metabolism remain unknown. In this study, an operon (hpa), responsible for 5HPA degradation, was cloned from Alcaligenes faecalis JQ135. HpaM was a monocomponent flavin adenine dinucleotide (FAD)-dependent monooxygenase and shared low identity (only 28 to 31%) with reported monooxygenases. HpaM catalyzed the ortho decarboxylative hydroxylation of 5HPA, generating 2,5-dihydroxypyridine (2,5DHP). The monooxygenase activity of HpaM was FAD and NADH dependent. The apparent Km values of HpaM for 5HPA and NADH were 45.4 µM and 37.8 µM, respectively. The genes hpaX, hpaD, and hpaF were found to encode 2,5DHP dioxygenase, N-formylmaleamic acid deformylase, and maleamate amidohydrolase, respectively; however, the three genes were not essential for 5HPA degradation in A. faecalis JQ135. Furthermore, the gene maiA, which encodes a maleic acid cis-trans isomerase, was essential for the metabolism of 5HPA, nicotinic acid, and picolinic acid in A. faecalis JQ135, indicating that it might be a key gene in the metabolism of pyridine derivatives. The genes and proteins identified in this study showed a novel degradation mechanism of pyridine derivatives.IMPORTANCE Unlike the benzene ring, the uneven distribution of the electron density of the pyridine ring influences the positional reactivity and interaction with enzymes; e.g., the ortho and para oxidations are more difficult than the meta oxidations. Hydroxylation is an important oxidation process for the pyridine derivative metabolism. In previous reports, the ortho hydroxylations of pyridine derivatives were catalyzed by multicomponent molybdenum-containing monooxygenases, while the meta hydroxylations were catalyzed by monocomponent FAD-dependent monooxygenases. This study identified the new monocomponent FAD-dependent monooxygenase HpaM that catalyzed the ortho decarboxylative hydroxylation of 5HPA. In addition, we found that the maiA gene coding for maleic acid cis-trans isomerase was pivotal for the metabolism of 5HPA, nicotinic acid, and picolinic acid in A. faecalis JQ135. This study provides novel insights into the microbial metabolism of pyridine derivatives.


Assuntos
Alcaligenes faecalis/metabolismo , Piridinas/metabolismo , Alcaligenes faecalis/química , Alcaligenes faecalis/enzimologia , Alcaligenes faecalis/genética , Amidoidrolases/química , Amidoidrolases/genética , Amidoidrolases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Flavina-Adenina Dinucleotídeo/metabolismo , Hidroxilação , Cinética , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Óperon , Filogenia , Piridinas/química
14.
Arch Microbiol ; 200(1): 147-158, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28879417

RESUMO

The potential for aerobic NO2- removal by Alcaligenes faecalis strain NR was investigated. 35 mg/L of NO2--N was removed by strain NR under aerobic conditions in the presence of NH4+. 15N-labeling experiment demonstrated that N2O and N2 were possible products during the aerobic nitrite removal process by strain NR. The key enzyme genes of nirK, norB and nosZ, which regulate the aerobic nitrite denitrification process, were successfully amplified from strain NR. The gene sequence analysis indicates that copper-containing nitrite reductase (NIRK) and periplasmic nitrous oxide reductase (NOSZ) were both hydrophilic protein and the transmembrane structures were absent, while nitric oxide reductase large subunit (NORB) was a hydrophobic and transmembrane protein. According to the three-dimensional structure and binding site analysis, the bulky and hydrophobic methionine residue proximity to the nitrite binding sites of NIRK was speculated to be related to the oxygen tolerance of NIRK from strain NR.


Assuntos
Alcaligenes faecalis/metabolismo , Proteínas de Bactérias/genética , Óxido Nitroso/metabolismo , Aerobiose , Alcaligenes faecalis/enzimologia , Alcaligenes faecalis/genética , Alcaligenes faecalis/isolamento & purificação , Proteínas de Bactérias/metabolismo , Desnitrificação , Nitrito Redutases/genética , Nitrito Redutases/metabolismo , Nitritos/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Oxigênio/metabolismo
15.
Appl Biochem Biotechnol ; 184(3): 1024-1035, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28936681

RESUMO

Recombinant Escherichia coli cells harboring nitrilase from Alcaligenes faecalis were immobilized using tris(hydroxymethyl)phosphine (THP) as the coupling agent. The optimal pH and temperature of the THP-immobilized cells were determined at pH 8.0 and 55 °C. The half-lives of THP-immobilized cells measured at 35, 40, and 50 °C were 1800, 965, and 163 h, respectively. The concentration of R-mandelic acid (R-MA) reached 358 mM after merely 1-h conversion by the immobilized cells with 500 mM R,S-mandelonitrile (R,S-MN), affording the highest productivity of 1307 g L-1 day-1 and the space-time productivity of 143.2 mmol L-1 h-1 g-1. The immobilized cells with granular shape were successfully recycled for 60 batches using 100 mM R,S-MN as substrate at 40 °C with 64% of relative activity, suggesting that the immobilized E. coli cells obtained in this study are promising for the production of R-MA.


Assuntos
Alcaligenes faecalis/genética , Aminoidrolases , Proteínas de Bactérias , Células Imobilizadas/enzimologia , Ácidos Mandélicos/metabolismo , Alcaligenes faecalis/enzimologia , Aminoidrolases/química , Aminoidrolases/genética , Aminoidrolases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
Sci Rep ; 7: 39991, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28059164

RESUMO

Pyruvic oxime dioxygenase (POD), a key enzyme in heterotrophic nitrification, was purified from Alcaligenes faecalis, and the molecular and catalytic characteristics were reexamined. POD was purified as the homotetramer of the subunit whose molecular weight was 30,000. The deduced amino acid sequence of POD was homologous with a class II aldolase that has been regarded as the Zn(II)-dependent enzyme catalyzing aldol reactions. The recombinant protein showed weak POD activity, and was activated by reconstitution with Fe(II). Affinity and catalytic constants were estimated at 470 µM and 4.69 sec-1, respectively. The POD was inactivated by EDTA to remove bound divalent metal cations. A reconstitution experiment demonstrated that Fe(II), not Zn(II), is essential for POD activity and that Mn(II) could partially fulfill the function of Fe(II). A mutant POD with replacement of His183, corresponding to one of three Zn(II)-binding ligands in the class II aldolase, by Asn was purified as a homotetrameric protein but showed no catalytic activities. Those results suggest that the POD is homologous to class II aldolase having non-heme Fe(II) as a catalytic center instead of Zn(II). A possible mechanism of the POD reaction is discussed on the basis of that of a known Fe(II)-dependent dioxygenase.


Assuntos
Alcaligenes faecalis/enzimologia , Dioxigenases/genética , Dioxigenases/metabolismo , Ferro/metabolismo , Alcaligenes faecalis/genética , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Domínio Catalítico , Clonagem Molecular , Dioxigenases/antagonistas & inibidores , Dioxigenases/química , Ácido Edético/farmacologia , Frutose-Bifosfato Aldolase , Peso Molecular , Nitrificação , Filogenia , Multimerização Proteica
17.
PLoS One ; 11(7): e0159009, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27391673

RESUMO

Both the enantiomers of 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid are valuable chiral synthons for enantiospecific synthesis of therapeutic agents such as (S)-doxazosin mesylate, WB 4101, MKC 242, 2,3-dihydro-2-hydroxymethyl-1,4-benzodioxin, and N-[2,4-oxo-1,3-thiazolidin-3-yl]-2,3-dihydro-1,4-benzodioxin-2-carboxamide. Pharmaceutical applications require these enantiomers in optically pure form. However, currently available methods suffer from one drawback or other, such as low efficiency, uncommon and not so easily accessible chiral resolving agent and less than optimal enantiomeric purity. Our interest in finding a biocatalyst for efficient production of enantiomerically pure 2,3-dihydro-1,4-benzodioxin-2-carboxylic acid lead us to discover an amidase activity from Alcaligenes faecalis subsp. parafaecalis, which was able to kinetically resolve 2,3-dihydro-1,4-benzodioxin-2-carboxyamide with E value of >200. Thus, at about 50% conversion, (R)-2,3-dihydro-1,4-benzodioxin-2-carboxylic acid was produced in >99% e.e. The remaining amide had (S)-configuration and 99% e.e. The amide and acid were easily separated by aqueous (alkaline)-organic two phase extraction method. The same amidase was able to catalyse, albeit at much lower rate the hydrolysis of (S)-amide to (S)-acid without loss of e.e. The amidase activity was identified as indole-3-acetamide hydrolase (IaaH). IaaH is known to catalyse conversion of indole-3-acetamide (IAM) to indole-3-acetic acid (IAA), which is phytohormone of auxin class and is widespread among plants and bacteria that inhabit plant rhizosphere. IaaH exhibited high activity for 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which was about 65% compared to its natural substrate, indole-3-acetamide. The natural substrate for IaaH indole-3-acetamide shared, at least in part a similar bicyclic structure with 2,3-dihydro-1,4-benzodioxin-2-carboxamide, which may account for high activity of enzyme towards this un-natural substrate. To the best of our knowledge this is the first application of IaaH in production of industrially important molecules.


Assuntos
Alcaligenes faecalis/enzimologia , Amidoidrolases/química , Proteínas de Bactérias/química , Ácidos Carboxílicos/química , Ácidos Carboxílicos/síntese química , Estereoisomerismo
18.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 7): 507-15, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27380367

RESUMO

D-3-Hydroxybutyrate dehydrogenase catalyzes the reversible conversion of acetoacetate and D-3-hydroxybutyrate. These ketone bodies are both energy-storage forms of acetyl-CoA. In order to clarify the structural mechanisms of the catalytic reaction with the cognate substrate D-3-hydroxybutyrate and of the inhibition of the reaction by inhibitors, the enzyme from Alcaligenes faecalis has been analyzed by X-ray crystallography in liganded states with the substrate and with two types of inhibitor: malonate and methylmalonate. In each subunit of the tetrameric enzyme, the substrate is trapped on the nicotinamide plane of the bound NAD(+). An OMIT map definitively shows that the bound ligand is D-3-hydroxybutyrate and not acetoacetate. The two carboxylate O atoms form four hydrogen bonds to four conserved amino-acid residues. The methyl group is accommodated in the nearby hydrophobic pocket so that the formation of a hydrogen bond from the OH group of the substrate to the hydroxy group of Tyr155 at the active centre is facilitated. In this geometry, the H atom attached to the C(3) atom of the substrate in the sp(3) configuration is positioned at a distance of 3.1 Šfrom the nicotinamide C(4) atom in the direction normal to the plane. In addition, the donor-acceptor relationship of the hydrogen bonds suggests that the Tyr155 OH group is allowed to ionize by the two donations from the Ser142 OH group and the ribose OH group. A comparison of the protein structures with and without ligands indicates that the Gln196 residue of the small movable domain participates in the formation of additional hydrogen bonds. It is likely that this situation can facilitate H-atom movements as the trigger of the catalytic reaction. In the complexes with inhibitors, however, their principal carboxylate groups interact with the enzyme in a similar way, while the interactions of other groups are changed. The crucial determinant for inhibition is that the inhibitors have no active H atom at C(3). A second determinant is the Tyr155 OH group, which is perturbed by the inhibitors to donate its H atom for hydrogen-bond formation, losing its nucleophilicity.


Assuntos
Ácido 3-Hidroxibutírico/química , Alcaligenes faecalis/química , Proteínas de Bactérias/química , Inibidores Enzimáticos/química , Hidroxibutirato Desidrogenase/química , Subunidades Proteicas/química , Ácido 3-Hidroxibutírico/metabolismo , Alcaligenes faecalis/enzimologia , Motivos de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Expressão Gênica , Glutamina/química , Glutamina/metabolismo , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Hidroxibutirato Desidrogenase/antagonistas & inibidores , Hidroxibutirato Desidrogenase/genética , Hidroxibutirato Desidrogenase/metabolismo , Malonatos/química , Ácido Metilmalônico/química , Modelos Moleculares , NAD/química , NAD/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Tirosina/química , Tirosina/metabolismo
19.
Proc Natl Acad Sci U S A ; 113(11): 2928-33, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26929369

RESUMO

Proton-coupled electron transfer (PCET), a ubiquitous phenomenon in biological systems, plays an essential role in copper nitrite reductase (CuNiR), the key metalloenzyme in microbial denitrification of the global nitrogen cycle. Analyses of the nitrite reduction mechanism in CuNiR with conventional synchrotron radiation crystallography (SRX) have been faced with difficulties, because X-ray photoreduction changes the native structures of metal centers and the enzyme-substrate complex. Using serial femtosecond crystallography (SFX), we determined the intact structures of CuNiR in the resting state and the nitrite complex (NC) state at 2.03- and 1.60-Å resolution, respectively. Furthermore, the SRX NC structure representing a transient state in the catalytic cycle was determined at 1.30-Å resolution. Comparison between SRX and SFX structures revealed that photoreduction changes the coordination manner of the substrate and that catalytically important His255 can switch hydrogen bond partners between the backbone carbonyl oxygen of nearby Glu279 and the side-chain hydroxyl group of Thr280. These findings, which SRX has failed to uncover, propose a redox-coupled proton switch for PCET. This concept can explain how proton transfer to the substrate is involved in intramolecular electron transfer and why substrate binding accelerates PCET. Our study demonstrates the potential of SFX as a powerful tool to study redox processes in metalloenzymes.


Assuntos
Alcaligenes faecalis/enzimologia , Proteínas de Bactérias/química , Cristalografia por Raios X/métodos , Nitrito Redutases/química , Alcaligenes faecalis/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Catálise , Cobre/química , Cristalografia por Raios X/instrumentação , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Nitrito Redutases/genética , Nitrito Redutases/metabolismo , Nitritos/metabolismo , Oxirredução , Mutação Puntual , Conformação Proteica , Prótons , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Relação Estrutura-Atividade
20.
J Biotechnol ; 219: 142-8, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26732414

RESUMO

To avoid isolation and purification of the intermediate 6-aminopenicillanic acid (6-APA), a two-enzyme two-step cascade synthesis of ampicillin from penicillin G was established. In purely aqueous medium, penicillin G hydrolysis and ampicillin synthesis were catalyzed by immobilized wild-type and mutagenized penicillin G acylases from Alcaligenes faecalis (Af PGA), respectively (Fig. 1). The ßF24 G mutant Af PGA (the 24th Phenylalanine of the ß-subunit was replaced by Glycine) was employed for its superior performance in enzymatic synthesis of ampicillin. By optimizing the reaction conditions, including enzyme loading, temperature, initial pH and D-PGME/6-APA ratio, the conversion of the second step of ampicillin synthesis reached approximately 90% in 240 min and less than 1.7 mole D-PGME were required to produce 1 mole ampicillin. Overall, in a 285 min continuous two-step procedure, an ampicillin yield of 87% was achieved, demonstrating the possibility of improving the cascade synthesis of ampicillin by mutagenized PGA, providing an economically efficient and environmentally benign procedure for semi-synthetic penicillins antibiotics synthesis.


Assuntos
Alcaligenes faecalis/enzimologia , Ampicilina/metabolismo , Penicilina Amidase/metabolismo , Penicilina G/química , Alcaligenes faecalis/metabolismo , Ampicilina/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Enzimas Imobilizadas/genética , Enzimas Imobilizadas/metabolismo , Hidrólise , Mutação , Penicilina Amidase/genética , Engenharia de Proteínas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...